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1. Introduction 

* 
The purpose of this grant is to investigate the use and implementation of Ada 

in distributed environments in which reliability is the primary concern. In 

particular, we are concerned with the possibility that a distributed system may be 

programmed entirely in Ada so that the individual tasks of the system are 

unconcerned with which processors they are executing on, and that failures may 

occur in the software or underlying hardware. 

Over the next decade, it is expected that many aerospace systems will use Ada 

as the primary implementation language. This is a logical choice because the 

language has been designed for embedded systems. Also, Ada has received such 

great care in its design and implementation that it is unlikely that there will be 

any practical alternative in selecting a programming language for embedded 

software. 

The reduced cost of computer hardware and the expected advantages of 

distributed processing (for example, increased reliability through redundancy and 

greater flexibility) indicate that many aerospace computer systems will be 

distributed. 

for advanced aerospace embedded systems. 

The use of Ada and distributed systems seems like a good combination 

During this grant reporting period our primary activities have been: 

(1) Continued development and testing of our fault-tolerant Ada testbed on our 

DEC VAX 111780. 

* Ada is a trademark of the US. Department of Defense 
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(2) Relocation of the testbed to a network of Apollo DN300 professional 

workstations. 

(3) Consideration of desirable language changes to allow Ada to provide useful 

semantics for failure. 

(4) Analysis of the inadequacies of existing software fault tolerance strategies. 

( 5 )  The preparation of various papers and presentations. 

A summary of the various implementation activities of our fault-tolerant 

Ada testbed are described in section 2. The sequencer has been given a new, 

relatively sophisticated control language, and it is described in section 3. A major 

part of our effort has been the relocation of the testbed to the Apollo network, and 

this activity is described in detail in section 4. 

- In our analysis of the deficiencies of Ada, it has been quite natural to consider 

what changes could be made to Ada to allow it to have adequate semantics for 

handling failure. In section 5, we describe some thoughts on this matter reflecting 

what we consider to be the minimal changes that should be incorporated into Ada. 

These thought are included in a programming language that is a variant of Ada 

that we call Ada 2. The design of Ada 2 is fairly complete and will appear in a 

PhD dissertation shortly [l]. We include a summary of some aspects of Ada 2 in 

section 5. 

We consider it to be important that attention be paid to software fault 

tolerance as well as hardware fault tolerance. The reliability of a system depends 

on the correct operation of the software as well as the hardware. Software fault 

tolerance is rarely used in practice and when it is used, it is ad hoc with no 

formalism or organization. One of the reasons for this state of affairs is the general 
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inadequacy of existing proposals for building software in a fault-tolerant manner. 

Before reviewing Ada and trying to incorporate software fault tolerance 

mechanisms into the language changes we consider necessary, we have reviewed the 

state of the art and prepared a systematic set of criticisms of existing proposal for 

the provision of fault tolerance in software. This set of criticisms is summarized 

in section 6. These criticisms have lead us to develop a new language facility for 

backward error recovery called the colloquy. This construct is briefly introduced in 

section 5 but is described in detail in Appendix 2. 

During the grant reporting period we have made various reports about this 

work. O w  activities in this are2 ;ire described in section 7. Appendix 1 contains an 

example program that has been run on the testbed. Appendix 2 contains a paper 

about our work in software fault tolerance that has been submitted to the 

Fifteenth Symposium on Fault-tolerant Computing to be held in Michigan in 

June. 



4 

2. Implementation Status 

We have continued our implementation activities of both the testbed and the 

associated translator. The translator translates a subset of Ada which includes 

most of the tasking and exception handling mechanisms into code for the virtual 

processors implemented by the testbed. 

Some parts of the testbed have had to be redesigned and reimplemented as a 

result of obtaining a more accurate understanding of the way in which Ada 

operates. In many cases, the language definition is very obscure and it is quite 

difficult to determine exactly what is meant. In other cases. the semantics are 

comprehensible but extremely complex making an accurate implementation 

difficult. An area that has given us a great deal of diiliculty is the exception 

mechanism. It appears relatively. simple and straight forward as first but the many 

possibilities for exception generation during processing of declarations for example 

makes an accurate implementation very difficult. Our implementation of the 

exception mechanism has been redesigned and the implementation has been revised. 

The overall state of the implementation can be gauged from the fact that the 

simple program that we have used as an example in various papers and 

presentations has been successfully executed using the translator and the testbed. 

The source text of the program that was executed is contained in appendix one of 

this report. A small number of other tests have been run and used to find errors in 

the translator and testbed. We are just beginning a systematic effort to debug the 

system. 

The system continues to run on a single VAX using UNIX processes to 

We had simulate computers and UNIX pipes to simulate communications facilities. 
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intended to use a network 

The use of the VAX/UNIX 

of IBM Personal Computers as the target of this testbed. 

combination has always been viewed as an interim step 

that allowed us to develop the software in a relatively convenient and friendly 

environment. Clearly the facilities of the IBM PC are relatively limited although 

probably adequate with sufficient care. The major problem of porting the testbed 

to the IBM PC’s would be the very long compile times resulting from the slow 

processor, the small memories, and the use of floppy disks. 

Our department has been fortunate in receiving funds for the purchase of 

some Apollo workstations. At the time of writing, the department has ten 

workstations connected together via a token-ring bus, and the network also has a 

300 Megabyte disk system. They are equipped with relatively large main 

memories, and in general are more powerful computers than the IBM PC’s. We 

feel the Apollos are more appropriate for the support of the testbed. The Apollos 

also support a variant of UNIX which makes them somewhat compatible with the 

testbed as developed on the VAX. 

In order to avoid spending inordinate amounts of time investigating the 

idiosyncrasies of the Apollo system or building pieces of support software, we 

decided to wait until other research projects had successfully used the Apollos and 

demonstrated that they could provide the facilities we need before we attempted 

to use them. An early effort to use the Apollos [21 showed that they could provide 

Pascal support and communications’ support but the speed of communication was 

very low. The reason for the slow speed is the approach used by the Apollos for 

user-originated inter-node communication. All such traffic has to go through a 

disk-based mail box with the result that the transmission speed is disk limited. 

We decided that the perfrormance was adequate given the other inefficiencies of 
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our testbed and proceeded to move the entire system to the Apollo network. That 

transfer has been completed and the system is now operational on the Apollos. 

The details of the process involved in moving the system to the Apollos are 

described in section 4. 

As well as replacing the control language for the sequencer, we have replaced 

the interface that each physical processor provides to the experimenter. Recall that 

each physical processor supports an arbitrary number of abstract processors, and 

that each abstract processor supports an arbitrary number of virtual processors 

(Ada tasks). In the VAX implementation, each physical processor is actually a 

U i I X  process but it is equipped with a terminal whicn appears to be an operator’s 

console. On the Apollo network, each physical processor is actually a DN300 

workstation which is equipped with a monitor. To allow the experimenter to keep 

track of the activities that are under way on each physical processor, we have 

implemented a series of displays that the experimenter can arrange to be displayed 

on the operator’s console for the physical processor of interest. Each of these 

displays is updated as execution proceeds and displays are provided to show: 

(1) the overall status of the physical processor, 

(2) the status of each abstract processor on that physical processor, 

(3) the status of each virtual processor on that physical processor, 

(4) all the current breakpoints for all the virtual processors on that physical 

processor, 

( 5 )  the status of all the simulated I/O devices on that physical processor. 

These displays will be extended and enhanced as we discover what information is 

most interesting to the experimenter. Even now however, we find the information 



7 

very useful, and, for example, can show the way in which the abstract processor’s 

time is being multiplexed among the virtual processors. 

I 
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3. Sequencer Control Language 

Recall that the testbed is trying to allow experimenters to answer "what if,." 

questions about concurrent Ada programs. The sequencer control language is the 

experimenters interface with the testbed and so its form and facilities are 

extremely important. 

Why is control of parallel programs any different from sequential programs? 

The reason is that "what if..." questions about tasking cannot be answered easily 

(sometimes never) because, in most implementations, a set of tasks cannot be forced 

into the necessary state that leads to the "what if."" question. This is not the case 

with sequential languages because they are deterministic. In most debugging 

systems for sequential languages there is a singlestep facility whereby effects of 

individual instructions within a program can be studied in detail. Concurrent 

languages, on the other hand, are nondeterministic There is no guarantee that a 

particular state of interest is reached on any given execution. For example, suppose 

a set of Ada tasks is executing asynchronously on the Ada testbed with the 

scheduler controlling which task runs when. The experimenter may be interested 

in asking questions such as: What would happen if this particular task were 

forced into a certain state in its execution and this other task were forced to stop at 

a specsc point in its execution?" and then "What do the contents of memory look 

like for a particular virtual processor at this point?". These questions are typical of 

those asked for controlling parallel programs. This is the level of control that is 

essential for the monitoring and experimentation of these Ada tasks. Hence, the 

main function of the command language is to provide the facilities for performing 

this control. Control is needed not only to singlestep individual tasks, but to 

single-step them in relation to each other. 
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The command language interpreter provides the interface between the user 

command level and the sequencer module of the testbed. It receives the command 

line, interprets it, and passes the validated information to the rest of the sequencer 

which is then responsible for actually performing the actions to carry out these 

commands. 

In the design of the sequencer command language, there are basically two 

elements essential to the design for control of Ada tasks. They are the ability to 

monitor, in some meaningful way, the tasking activity so as to understand the 

behavior of the parallel tasks, and the ability to perform experiments based, either 

implicitly or expiicitiy on the information gathered. 1 hrough the interaction of 

these two elements, the user can attempt to gain an understanding of the causes of 

-_ 

existent errors or at least to note where the implementation and the expected 

behavior of the parallel tasks differ. 

The overall strategy that is taken in the design of the command language is to 

control Ada tasks, not to debug Ada programs. First, the testbed must be viewed 

from an operational semantic defhition standpoint: semantic in that it pertains to 

answering questions of language meaning; operational in that it allows programs to 

be executed and their actions to be observed. Furthermore, the definition must 

provide the ability to answer the "what if..." questions 

Given these general requirements, we established the following minimal set of 

detailed requirements for control of the sequencer and hence the testbed: 

(1) Starting a desired experiment. This requires the availability of the compiled 

Ada code to be interpreted and the map showing how the abstract processors 

for the experiment are to be mapped to physical processors. 



10 

Executing named tasks. This requires a list of the task names (any number) 

that the experimenter wishes to start executing. This command was 

originally separate but it has been included with the command for restarting 

tasks which have been stopped. This was done since the involved tasks are 

each at their own fixed code location and the one command for starting could 

then be viewed as a set of tasks being suspended at a particular breakpoint 

(breakpointing being the ability to temporarily halt an executing program); 

for the initial starting up of a task’s execution then this breakpoint would be 

defined at location zero. The start would always be from a current 

brmkpint. 

(3) Exiting from the existing test environment. A provision must be made to 

allow the experimenter to have a summary of important system information 

listed upon exit. 

(4) Stopping or artificially suspending named tasks no matter what they are 

doing. As with starting task execution, a list of the tasks, again any number, 

the user wishes to stop or suspend must be given. A common example of a 

situation that would use this command would be one in which there was the 

desire to observe temporary suspension of all but one process in order to 

eliminate interference from any of the other processes. 

( 5 )  Causing a particular abstract processor (AP) to fail. Since a major point of the 

testbed is to see if software strategies can tolerate processor failures, the 

experimenter should be provided with the ability to fail any processor. 

Giving the AP number of the particular AP to be failed would cause the 

physical processor owning the subject AP to cease to schedule it. 
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Setting and unsetting breakpoints. The general problem regarding breakpoints 

involves the desire to have tasks suspended in the middle of statements. Since 

AP code may be shared among tasks, specification of breakpoints by location 

only is insufficient. Therefore, a breakpoint has to be defined such that it is 

named by the source-level task name (task id) and a code location. It is also 

considered desirable that the effects of a breakpoint be delayed so that a task 

must execute that code location more than once before "hitting" the 

breakpoint. This latter facility .is required to provide more flexibility to the 

user and his desire to perform experiments with loops or end conditions 

Restarting tasks' execulions. As Liexribed above, a Si of &task iiaiiie w-ould be 

given to start or resume any number of tasks executing. This would allow the 

named tasks to run until they encounter a breakpoint or terminate. The 

ability to restart task execution is important because many fault-tolerant 

strategies call for automatic replacement of defective hardware. 

Single stepping a particular task. This would require the name of the task 

that is to be involved and the number of instructions that are to be executed 

before the subject task is temporarily halted; absence of the count should yield 

a default of single stepping the named task through the interpretation of 

exactly one instruction. This capability would allow a user to deal with tasks 

through a perspective which is more microscopic than the Ada source language 

level. For instance, each process can be brought to the desired state by 

executing to a breakpoint set for that process and single stepping for fine 

adjustment from there. 

Displaying the sequencer's tables. These displays would provide a quick and 

useful reference of which tasks are running, where and what there current 
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breakpoints are, etc 

(10) Displaying the state of the testbed's data structures. This level of control 

would be valuable in decisions that must be made regarding branches. The 

user could breakpoint before the branch, display the memory contents and 

decide what to do next on the basis of that. All of these display capabilities 

would provide the means of monitoring whether the fault-tolerant strategy 

that is being tested works or not. 

(11) Calling upon a help facility. This would permit the user at any time before, 

during, or after the experiment to view the available commands that are 

allowed; syntax and usage of each command wouid be provided. 

(12) Recalling commands. This would allow the experimenter to look at a log of 

commands that he has used. 

With this set of command facilities, the experimenter will have a good basis 

for implementing the kind of control that is needed in a first, elementary, but 

useful control mechanism for Ada tasks. It satisfies the two elements initially 

described as essential to the control of Ada tasks: it possesses commands to allow 

the ability to monitor the tasking activity at a microscopic level and it provides 

the ability at any moment of the inspection to perform experiments as to the 

future endeavors of those tasks. This set is by no means complete and there exists 

a lot of remaining issues that require investigation before further expansion of the 

control mechanism can be made. 

Listed below are the actual commands of the command language interpreter as 

presently implemented: 
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NEW 

Start an experiment. 

program must be given. 

The names of the files containing the AP'to PP map and 

QUIT 

Exits an experiment without having a summary dump listed. 

QUITD 

Exits an experiment and has a summary dump listed. 

RESUME 

Starts or resumes any number of tasks executing; execution will stop when a 

breakpoint is hit. The names of the tasks to be resumed must be listed; a',' in 

place of the task name list will resume all currently started tasks. 

STOP 

Stops any number of tasks executing. The names of the tasks to be stopped 

must be listed; an 'w in place of the task name list will stop all tasks that are 

I'UMklg. 

KILL 

Causes one AP to be killed (failed). The AP number to be killed must be given. 

BREAK 

Sets a breakpoint according to a named location. The task name and address in 

the task at which to set the breakpoint must be given. An optional count may 

be given to indicate the number of times to execute the instruction before 

stopping occurs; the default is one. 

UNSET 

Unsets a breakpoint according to a named location. The task name must be 
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given. An optional code offset may be given to indicate the address in the task 

at which the breakpoint was set. If no code offset is given, all breakpoints for 

that task are unset. 

SINGLESTEP 

Executes the named task one instruction at a time for the given number of 

instructions. The task name must be given. A count is optional to give the 

count of instructions to execute with the default being one. 

DISPLAY APTOPPMAP 

Displays the AP-number to PP-number map. 

DISPLAY VPTOAPMAP 

Displays the W-name to AP-number map. 

DISPLAY TASKTOWMAP 

Displays the task-id to VP-name table. 

DISPLAY VPDATASTRUCTURE 

Displays the VP data structure. 

DISPLAY VPSTATE 

Displays the state and location of the named VP. 

DISPLAY BREAKPOINTS 

Displays all of the breakpoints in the current experiment. 

HELP 

Displays all of the available commands with the ability to give a description of 

each. 

FLASHBACK 

Displays the last speciiied number of commands. If no number is provided it 



defaults to 15. 

The command language interpreter also provides in its command language 

several other capabilities and features including abbreviations for the commands, 

good error handling and feedback of the error messages to the user, checks made on 

all parameters, a UNIX-like MORE facility for certain commands like the 

flashback command, and sensible screen layouts. 
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4. Transporting The Testbed To The Apollo Network 

From the start of the project, we had attempted to keep the system portable 

by segregating what we thought would be machine dependencies in the programs 

into separate files. These are called "include files" because a compiler directive in 

the main source file can cause the contents of these Ues to be included inline. The 

intent was that the included files could be easily replaced by other include files 

whose contents would be specific to the new machine. Up until this port, the 

include files we had been using had been specific to the VAX under UNIX. The 

original substitute include files had been specific to the IBM personal computers 

running MS-DOS. The change of target from the IBM personal computers to the 

Apollo workstations necessitated the construction of include files specific to these 

machines and their operating system. This operation involves replacing 

declarations and the bodies of Pascal procedures. Some procedures had to be given 

null bodies. There were cases in which we had to create new procedures to 

duplicate the functionality of certain "standard" Pascal features which were 

missing in Apollo Pascal. Other procedures had included system calls and had to be 

reprogrammed do deal with the different interface presented by the Apollo 

operating system. Later in the project, we were forced to return to this step due to 

an upgrade in the Apollo operating system. 

Not all machine or system dependencies can be removed from the main source 

files into include files. Most of these have to do with idiosyncrasies of the 

compilers involved. Examples are the syntaxes required by the different compilers 

for the "include" and "external" directives and the larger set of keywords 

recognized by Apollo's extended version of Pascal. The latter necessitated a 

systematic respelling of variable names. Due to the differing directory structures 
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of UNIX and the Apollo operating system, the pathnames for files named in 

compiler directives had to be changed. Since copies of the machine specific include 

files for both the VAX and the Apollos reside on the VAX, they cannot have the 

same file names. We needed to change references to VAX-specific files to Apollo- 

specific references. Apollo Pascal requires a separate explicit "open" call following 

each "reset" or "rewrite". All instances had to be so modified. The VAX version 

had needed to use UNIX "pipes", a tool which required us to give up the standard 

input and output files in the interpreters and use other files to deal with the 

terminal interface. On the Apollos, only the standard input and output files can be 

-& for the terminal interface. This i-qtii-ed e& e ~ m i x e  of the dtzrmtte file 

names to be changed. On the VAX, the default size of integers is 32 bits, but 

Apollo Pascal uses 16 bits instead. Uses of the type "integer" were systematically 

changed to "integer32" in case the variable being declared needed that much room. 

Some do. 

We wanted to continue to maintain a single version of the system into which 

we could incorporate any future enhancements and which could be automatically 

modified to bring those enhancements to any targeted machine. The principal 

instance of the testbed is the VAX version. In order to make enhancements to the 

VAX version automatically available to the Apollo version, all of the 

modifications described above needed to be automated. Thus we built JZters 

(programs that transform program text) to accomplish these changes in a systematic 

way and a shell script (a set of commands written in the UNIX command 

language) to effect the transfer of files from the VAX to the Apollos. Finally, the 

parser tables for the user interface (command interpreter) are represented in 

binary. We had to create a pair of filters to convert these tables to text for the 
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transfer across machines and to convert them back into the binary format suitable 

to the Apollos. 

This system was apparently one of the first large set of files to be transferred 

over the communications path between the VAX and the Apollos. Some of our 

files would get across and others would not, and those which did get across often 

had their contents altered which was only detected during attempts at compilation. 

We had to make several attempts before we got all of the files transferred 

proper 1 y . 
Our attempts at compiling the system on the Apollos pointed out the errors in 

transferring the source and some minor undocumented differences of the target 

compiler. which do not perform packing ignore the 

"packed" keyword. Apollo Pascal insists that it not occur. When we obtained a 

successful cornpilation, we began to try to exercise those parts of the system which 

required no Ada program to interpret. 

Most Pascal implementations 

During these tests, we found and corrected several items we had previously 

overlooked. Despite our conversion programs for transferring them from one 

machine to the other, the parser tables needed a different binary format than we 

had given them. The filters had been incomplete in that they had not caught all of 

the file names which neeed changing, and in that they had altered certain 

declarations so as to produce anomalous behavior at execution time. 

The pre-initialization portions of the interpreter and controller main 

programs exist in machine-specific include files. We could not prepare much to go 

into these files until we had experimented with initializing and operating the 

Apollo communications mechanism. Similarly, the machine specific files having to 

do with communication between interpreters and the controller in the testbed 
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contained calls to routines which had not been built. 

In the interest of time and effort, we intended to reuse some low level 

routines written (in C> for another researcher's project. These routines were to 

provide access to the Apollo inter-node communications facilities, and a more 

easily understood and used interface between our system and the Apollo operating 

system. These routines turned out to be wholly unusable. We found that they 

were misusing the Apollo primitives and almost always overwrote received 

messages before returning to our code. It was about this time that the 

aforementioned upgrade to the Apollo operating system occurred. Rather than try 

to fix the borrowed routines, we determined to write our own (in Pascal). 

Although the Apllos communicate among themselves in a ring network, all 

user programmed communication must pass through a single user-written process. 

This makes the Apollos resemble a star network. We had to write a program to 

serve as the hub of this star network. There were also certain global or "own" 

variables which had to be maintained for the communications routines to operate 

properly. This necessitated the addition of another machine dependent include file 

to the system. Some badly documented features of the Apollo operating system 

hindered progress in building the communications interface. An example is the 

status codes returned by system calls. The returned status code turns out to be a 

record and one must check different fields of that record depending on what code 

was returned. In other words, one must know what the returned status is in order 

to determine which field to find its value. This caused some tests to show that 

messages were not transmitted even though they had obviously been received. 

Determining what the real problems were and finding ways to get around them 

involved writing and running several programs other than the testbed system. 
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Once the required software was written and communication was established, 

the tested's user interface needed to be repaired. UNIX and the Apollo operating 

system have very different views of terminals, in particular of "raw mode". Under 

UNIX, raw mode routines resemble interrupt handlers and there is the option of 

detecting whether anything has been typed before being forced to read it in the 

Pascal sense. The Apollos, on the other hand, do everything through a screen 

manager which allows the user program to poll the keyboard but forces a read if 

anything has been typed. We had to write routines which make read-without- 

lookahead look like read-with-lookahead. In the process of repairing the user 

b-terface, we discovered other prob!ems. -4s m example, snme fea.tures of the 

interface were written as part of a student project. Rather than use the parser 

which we were repairing, each of these features included its own. We had to track 

down and individually repair each of these. 

The files resulting from the port were transferred back to the VAX as the 

archival and future enhancement site. The version obtained through all of the 

modifications we had made was compared to the original VAX version. The 

differences were largely in the files which were intended to be machine specific. 

Certain changes, however, had pointed out portions of the system which had been 

machine specific despite our early efforts. These portions were moved into the 

appropriate files and the filters were run again to ensure that the new VAX version 

could be transformed automatically into the Apollo version. 

In conclusion, the entire testbed has been successfully moved to the Apollo 

network and modified to operate there. It has run a set of elementary tests using 

several Apollo computers and we are convinced that it is as operational as the 

VAX version. The permanent version of the source code that is stored on the VAX 
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has been modified to include all the changes necessitated by the Apollo system. 
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5. Ada And Hardware Fault Tolerance 

Nothing is stated in the Ada Language Reference Manual about how programs 

are to proceed when a processor is lost in a distributed system although the manual 

does specifically include distributed computers as valid targets. We have 

summarized our concerns about Ada’s inability to deal with processor failure by 

pointing out that the problem is basically one of omitted semantics. In particular 

it was found that: 

(1) Although tasks could be affected by the failure of a processor which contained 

some context used by the task or some process it was communicating with, the 

language did not specify what the effect should be. In other words the failure 

semantics for Ada are incomplete. 

(2) It was not clear what program units could be distributed, what the semantics of 

distribution were, or what the syntax for specifing distribution was. The 

distribution semantics for Ada are missing. 

(3) There were many problems with communication between tasks. Not only could 

a task be suspended indefinitely if it was communication with a task on a 

processor which had failed, but timed and conditional entry calls did not 

provide a task with the assurance that it could eventually continue. 

We have proposed additional semantics to deal with this situation. The heart 

of these additional semantics is the notion that the loss of a processor and 

consequently the loss of part of the program can be viewed as equivalent to the 

execution of abort statements on the lost tasks. Thus in all cases, failure semantics 

would be equivalent to the semantics of abort. 
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We have also proposed a comprehensive mechanism for implementing these 

semantics. This mechanism requires quite extensive changes to the execution-time 

support for Ada but it is feasible as we have shown in our testbed implementation. 

The use of abort semantics is not the most elegant approach. There are 

numerous consequences that seem rather extreme if considered out of context. For 

example, abort semantics imply that all the dependent tasks of a task that is lost 

must be terminated even if they are still executing on non-failed computers. The 

overwhelming advantage of abort semantics is that they do not require that the 

language be changed. 

A more elegant and clearly preferable approach in the long run is to modify 

the language and to introduce language structures that include appropriate failure 

semantics. During the grant reporting period we have been considering what form 

these language structures might take. 

Although Ada ignores this problem, other languages do not and language 

designers have proposed various schemes in the literature. For example, Liskov has 

proposed "guardians" [31. and "atomic actions" [41 have been proAr>osed by several 

people. We have considered both, along with other schemes, as candidates for 

inclusion in Ada. None of these proposals seem appropriate however because they 

are not able to provide the performance level that is required in the kind of 

applications for which Ada is intended. The naive introduction of atomic actions 

into Ada would reduce performance substantially; probably making the language 

worthless. 

Given that language structures with more sophisticated semantics probably 

cannot be added to Ada, we have considered what more modest changes could be 

made that would be in the spirit of the language but would provide acceptable 
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performance. We have broken the lack of failure semantics in Ada into two parts 

and addressed each separately. The two parts are entrapment in communication and 

loss of  context, both of which we have documented extensively in the past. 

Entrapment in communication can be dealt with in a revised language much 

like it is with abort semantics. Raising an exception in a task that is the subject of 

entrapment is a reasonable way to inform the task of the problem and to provide a 

mechanism to allow it to proceed. The difficulty that follows from something like 

this is the subsequent dacul t  with redirection of communication. Given that a 

task has been lost and cannot be used in further communication, it is necessary to 

mmmunicate with its alternate. Since A b  (a p~.senf!y defined! x p i m  that the 

caller explicitly use the name of the callee in a rendezvous, a different call must be 

used for the alternate. This means that all communication must be guarded 

(probably by an IF statement) so that different entry calls can be made. This is a 

large burden to put on the programmer, and it can hardly be described as elegant. 

We have no well-defined suggestions on preferable language structures at this time. 

We also observe that the Ada rendezvous makes no provision for broadcast 

messages. There are plenty of occasions when a single task needs to communicate 

with a whole set of other tasks; for example starting a set of real-time services or 

informing a set of tasks about machine failure at the level of the application 

software. This seems like a serious omission. 

The loss of context problem is actually far more serious. With abort 

semantics, loss of context requires that parts of the program be removed when this 

may not be strictly necessary. One solution that we have considered is to require 

that the general nesting structure of the program be reflected in the way tasks are 

assigned to processors. For example, only tasks at the outermost level would be the 
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subject of controlled distribution. All nested tasks would be required to be 

assigned to the same processor as their parent. This seems like a reasonable solution 

since any loss of context takes with it all the objects that could reasonably use that 

context. It is however a major restriction on the forms that programs may take. 

The key problem with this type of limitation is that it may not be suitable at 

all for certain applications. Consider for example a system which includes a 

special-purpose hardware processor; a fast-fourier transform unit for example. 

The Ada code which provides a m  to the services of this unit will obviously 

reside on the unit. The fast-fourier transform functions may be required from 

 any parts of the program but the programmer might be reluctant to make these 

routines global. Good programming practice may well dictate that such routines be 

nested. Allowing nested objects to be distributed seems almost mandatory. 

In considering this problem we have concluded that it really is essential to be 

able to locate nested objects separately from their parents. To solve the resulting 

loss of context problem, we propose that Ada’s scope rules be enhanced to include 

objects that are distributable and have limited scope. We propose that the objects 

to be distributed be a new form of package and that the scope of objects in the 

package be limited to that package only. Access to the package would be through 

the objects made visible in the specification of the package in the usual way. 

Our consideration of this topic is not complete. We will continue to look at 

desirable extensions to Ada and complete the definition of the enhanced 

communications mechanism and the distributable packages. We include below 

some our thoughts at this time about how Ada might be modified. We are defining 

a revised version of Ada that includes all of these ideas called Ada 2. 
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5.1. Failure Semantics 

Failure semantics consist of two parts. First those tasks that can be affected by 

the loss of another task must be specified. Second the effect of the loss on them 

must be given. In the previous solution abort semantics were extended to cover the 

case of loss of a task by processor failure. This meant that dependents (in the Ada 

sense) were affected; the effect was to abort all affected tasks. These semantics 

ignore the important differences between aborting a task which can be thought of 

as an effort to remove a useless part of a program and losing a task by failure 

where the aim is to preserve as much of what remains as possible. In fact, a special 

case had to be made for the main prcgrarrl, otherwi the bss of the rnzifi program 

would result in aborting all non-library tasks. 

Attempts to produce less destructive semantics run up against the problem 

that the context usable by a program unit in Ada includes all enclosing scopes and 

cannot be restricted. Further no distinction is made between run-time and 

compile-time declarations so that a task which uses a package containing only type 

definitions will depend on that package even though the package may not exist at 

run-time. 

Any attempt to restrict visibility, say by using import/export lists, runs into 

the problem of avoiding restriction to an incomplete set of declarations. An 

example will illustrate the problem: 

type  PAIR i s  a r r a y  (1 . .  2) o f  INTEGER; 

type  LIST i s  a r r a y  ( 1  . .  100) o f  PAIR; 

LIST should not occur in an import list unless PAIR does. As import lists get long 

it becomes difficult to avoid such omissions. 
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Both long import lists and incomplete import lists can be avoided by 

encapsulating all declarations in declarative groups, each containing a complete list 

of declarations. The declarations contained within a declarative group are 

available within the begin-end part of the immediately enclosing unit. 

Declarative groups can be named or un-named. A named declarative group can be 

made available to another declarative group by mentioning its name in a with 

clause. An un-named declarative group cannot be made available in this way, 

consequently all declarations in an un-named declarative group are for strictly 

local use only. 

If a declarative group A is n a n d  i~ a ~ i t h  d a l ~  fer a dec!arative utnlin w--r €3 

then the declarations in A must be mentioned in B before they can be used in B 

remember that the declarations in B must be complete. This can be done in two 

ways: 

(1) A declaration from A can be referenced in B by mentioning its complete name 

in B; for example, A.name. 

(2)The name of A followed by a semicolon is equivalent to listing all the 

declarations in A. 

In Ada the role of a declarative group is one of the roles that can be assumed 

by a package; it seems better to separate declarative group which never ends up as a 

run-time entity (though the things declared in it might) from package which will 

normally represent a run-time object. Nevertheless, to avoid having to surround 

every package with a declarative group, it is convenient to treat a package 

similarly to a declarative group, by requiring that the visible part be a complete 

set of declarations and that access to the visible part be obtained by mentioning the 

package name in a with clause. 
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Returning to failure semantics, the first step is to define the context of a 

program unit to be the set of declarative groups and packages that it mentions in 

its with clauses. 

A declarative group (package) is said to be location-restricting if it declares 

anything other than types and tasks. Similarly a package is said to be location- 

restricting if its visible part declares anything other than types and tasks. 

A program unit is location-free if none of the declarative groups and packages 

in its context are location-free. 

Below, only location-free program units will be allowed to be distributed; if 

a program unit is not location-free its location is determined by the location of its 

context. If the constituents of its context have different locations the program is 

erroneous. A consequence of this is that the loss of a processor cannot effect the 

context of a task at run-time, no action needs to be taken in this case. The other 

possibility is the case where a task is affected by the loss of a task that it is trying 

to communicate with. This is dealt with in section below. 

5.2. Distribution Semantics 

In the earlier work it was assumed that the only program unit which could be 

distributed was the task. In fact, a much better case could be make for distributing 

packages and, as tasks can always be encapsulated into packages, it is a more general 

notion. Certainly if a task is to be called, the caller and the server must have some 

common environment; the place for this to be specified is in the visible part of a 

package (remember this must be a complete set of declarations), which contains the 

server task. 
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Here it is important to carefully distinguish the information needed to create 

a task, the information needed to use a task, and an implementation of the task. In 

Ada if a task object is visible so that the task can be used then the type definition 

will also be visible so that a copy of the task can be created. Although the task 

can be hidden by using a package and renaming the entry calls as procedures, the 

distinction between creation and use is so important that it is worthwhile to 

express it more directly in the syntax of the language. The situation with the 

implementation is even more striking. It is clear that although the functionality of 

a task is defined by a single implementation, (ie. by its body) bottom up and t o p  

down design both work because the functionality is easier to grasp than the 

implementation. That being the case it would seem natural to let the same task 

have several bodies in particular it might be desirable to implement a task in 

different ways on different machines; using different speed/memory trade-offs for 

example. 

5.3. Communication 

In a distributed system where processors can fail, every communication with 

another processor may fail. It follows that unless a task is prepared to wait for a 

reply that will never come the task must take precautions. What the task would 

like to be able to do is to ensure that no matter what actions are taken by the 

communication tasks this task will be able to proceed. This can be done by having 

a time-out mechanism, mmuring the time waiting for the reply. Of cmrse, with 

such a mechanism the timeout could come too m n  and the task could proceed 

before the reply arrived. When the reply did arrive it would have to be discarded. 
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It would then be possible for a task to be on several queues at the same time. Since 

this can happen by accident, it might be desirable to let a task put itself onto 

several queues anyway, as in the Intel surrogate call. 

Further, if a caller must be prepared for the server to fail at any time, it 

would cause no further hardship for the caller if the server were allowed to 

manipulate the entry queues. In particular, a server should be able to take a call off 

the queue, examine it, and if necessary return it to the queue. 

Essentially the system would become a data-gram service where requests for 

service would be done as well as p i b l e  but nothing would be guaranteed. With 

this understood, tasks could control their own destiny and no action need be taken 

for tasks affected by the failure of atask that they were communicating with? 



31 

6. Ada And Software Fault Tolerance 

We have examined the literature on fault-tolerant software with the goal of 

determining the adequacy of Ada in providing a software fault tolerance 

mechanism. We find that Ada makes no provision whatsoever for software fault 

tolerance. Consequently we have considered what extensions to Ada might be 

desirable to support fault-tolerant software. 

In examining the literature we have concluded that the schemes that have 

been proposed are inadequate in general and in many cases incomplete. In this 

section we review the inadequacies of previous work in software fault tolerance. 

A general consideration for crucial systems is time. Boolean acceptance tests 

and voting codes must be reached and reached on time for the results to be useful 

at all. A common problem, which we refer to as the unexpected delay problem, is 

that some unanticipated circumstance, e.g. an infinite loop, may cause a particular 

section of code to be executed too late for its results to be useful or not to be 

executed at all. If a scheme does not address the unexpected delay problem, then it 

is insufficient for providing software fault tolerance in a real-time program since a 

program in that context needs only to be late to be considered faulty. Another 

consideration for a fault-tolerance scheme is the management of complexity. If 

the use of a scheme involves too much effort on the designer’s (programmer’s) part, 

it may be counter-productive in that more faults will be generated through the 

use of the scheme than would otherwise occur. Furthermore, a fault in the 

app!ia?ion nf a fault-tolerance scheme might make the system more dangerous 

than if fault tolerance-efforts had not been applied at all. A scheme supported by 

a rigid, encasing, structured syntax allows design-time (compile-time) enforcement 
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of the accompanying semantic rules. Such a quality in a scheme allows for added 

complexity without added faults. 

6.1. Exceptions 

Although claimed to be suitable for software fault tolerance, exception 

handling can only deal effectively with anticipated faults, not the unanticipated 

faults addressed by an actual fault-tolerance approach. A crucial system should 

have anticipated faults removed before it is placed into service. Exceptions can be 

*& within systems to reprent  axd deal with expected, mrmd, but uxs~d 

situations. 

In most languages, but particularly in Ada, when an exception handler is 

entered there is no indication of exactly from where control transferred. Neither 

is there an indication of how much of the state has been damaged. These problems 

make it difficult for a handler either to repair the fault and transfer back to the 

point where the exception was raised, or to replace the execution of the remainder 

of the "procedure". 

Often the finite list of available exception names (even when user defined 

names are included) is very general, such as in Ada: range-check, numeric-error, 

constraint-error, and tasking-error. As a result, the exception could have been 

raised in any of many statements (components), or in one of many places in one 

statement. Consider, for example, the following statement: 

I := A(J) + B(K) + C(L) + D(M); 

If the execution of this statement raises a subscript error, there are four different 
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subscript that could be involved. Also note that the subscript violation is a 

symptom of the actual fault. The actual fault might lie in the calculation of J or K 

or L or M, or it might be in some decision computation that erroneously directed 

control to this statement. Further, attempts to determine the extent of the damage 

by examining values in the state could raise another exception. Since one fault 

existed in the routine covered by the handler, it cannot be assumed that no others 

will exist in a continuation that attempts the same algorithm. Since multiple 

faults may have existed in that part of the routine already executed, ascribing the 

erroneous state detected to one fault and "handling" that one may not correct the 

skte at all. Indeed, 3 the fault to which the detected e r x r  is m r i h d  is nn? one of 

the actual faults in the routine, the actions of the handler may cause even more 

damage. 

Exception handling involves predicting or enumerating the faults that may 

occur in a system so a handler can be provided for each. This may be impracticable 

in a complex system. A failure to predict an exception and provide a handler for 

it could bring about the collapse of the entire control system or at the very least 

wreak havoc within some part of it. If a handler is provided for an exception 

with the expectation that that exception was only to be raised in one portion of a 

routine, but it was actually raised in another portion or propagated up from a 

component routine, the actions of the handler could be entirely inappropriate. 

6.2. N-Version Programming 

Although the method employs parallelism, it still implements software fault 

tolerance in logically sequential parts of a system: It is not a concept or construct 
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for dealing with parallel programs. 

The n-version programming proposals all assume that all versions will arrive 

at the crosscheck points - they ignore the unexpected delay or infinite loop 

problem. 

The proponents of n-version programming claim that the scheme is 

inherently more reliable than, say, recovery blocks. The reliability of the scheme 

depends upon the reliability of the voting criteria and test for agreement. That is 

just as volatile as the recovery block’s acceptance test. How to actually do the 

voting is unspecijkd. There are discussions of different choices for dealing with 

single numerical values, such as weighted sums, but not for the general case of a 

vector of values of differing types. The discussions on voting on single numerical 

results concludes that that is very difficult, but most applications are going to need 

long vectors of results of differing types. It would seem that voting in an actual 

control system might become impossible. The proponents have admitted that n- 

version programming may not be applicable in many situations 151. 

The n-version programming strategy depends upon the ability to create 

independent versions or programs derived from the same specifkition. As for how 

the independence of versions is to be achieved, there are appeals to the use of 

independent programming teams using different languages. Problems may arise 

from common programming experience and current fashions in algorithms, or even 

from a specification that specifies too much. 

As for the use of different programming languages and translators, that can be 

a source for faults. Translators for different programming languages are likely to 

use incompatible representations for even the simplest data structures, and will 

certainly provide incompatible synchronization mechanisms. The software that 
3 
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attempts to rectify these differences in preparation for distribution of inputs and 

gathering and voting upon results, either becomes a bottleneck subject to single- 

point failure or must itself be made fault-tolerant. If that software is made 

fault-tolerant by n-version programming, the software providing the same service 

for it comes into question, ad infinitum. 

Implementing an n-version program is not as easy as the descriptions make it 

out to be. It appears at first easy to do n-version programming in Ada - just put 

each version in its own task and let them execute. But problems arise in obtaining 

the results in order to vote on them and even in ensuring that all or most versions 

even reach the crosscheck points! infinite imp probiems can occur, and arranging 

for a faulty task to consent to a rendezvous with the driver is no mean feat. 

Voting in general presents a centralized bottleneck and is therefore undesirable for 

distributed applications. 

6.3. Recovery Blocks 

Since the recovery block concept relies on syntactic support from the 

programming language in use, and Ada fails to provide this syntax, recovery blocks 

cannot be used in Ada as presently defined. However, there are fundamental 

technical problems with recovery blocks also and we review them in this section. 

In a recovery block, there is only one test for acceptability of results. How to 

program the acceptance test to be both meaningful and allow a wide range of 

alternate algorithms to pass it is unspecified. Design diversity in the primary and 

the alternates, combixied with the possibility of degraded service from the 

alternates, implies that the acceptance test must not be made very strict. It must 
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correct) to pass the test, yet it must be strict enough to detect errors produced by 

any of the primary or the alternates. This combination may not be possible. A 

test that is general enough to pass all valid results might not be specific enough to 

actually detect all errors within the construct. The strategies involved in the 

primary and in the many alternates may be so divergent as to require separate 

checks on the operation of each "try" as well as an overall check for acceptability 

as regards the goal of the statement. The recovery block really needs multiple 

tests, one for the primary and one specific to each of the alternate algorithms, 

r- wrhaps with a general overall test a$ a check on the various individual tests. 

Like n-version programming, the recovery block scheme depends upon the 

generation of independent versions of software, in this case, to be used as the 

primary and alternates. Due to the degraded service concept, the alternates do not 

have to produce results so close as to be able to vote upon them, but they also need 

a certain degree of independence to reduce the possibility that they will contain 

the same or very similar faults. How to get independent versions for alternates is 

not really addressed in the recovery block proposals. 

The recovery block is strictly a sequential programming construct. It gives no 

hint about recovery after inter-process communication. The conversation concept 

is an appropriation of the recovery block concept, not an integral part. 

There is the question of when a recovery block should be used. There is little 

indication as to what portions of a program should be protected by recovery blocks. 

If used on every routine and every statement sequence, the tests may become 

trivial and fail to offer any benefit. If recovery blocks are only used at the 

outermost levels, the acceptance tests may be so complex as to duplicate the 
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complexity of the primary or alternates. This may introduce more faults in the 

acceptance test than the primary alone, or it may squander processing resources so 

that execution of an alternate would bring about a timing failure. 

The infinite loop problem and its generalization, the timing of control 

program activities has remained unaddressed by the recovery block scheme. 

How can we rectify the use of unrecoverable objects with the backward 

recovery strategy? There is some discussion in the literature on how recovery 

blocks could be reconciled with nested recovery block commitment to 

unrecoverable objects. 

The problem of the latency intervals for fault detection being longer than 

commitment intervals is not addressed. That is related to the problem of how to 

construct meaningful acceptance tests. It is assumed that acceptance tests can be 

constructed that can detect errors before they become so wide spread, or that 

multiple layers of nested recovery blocks' acceptance tests can together detect 

them. The possibility of nested recovery blocks allowing such errors to "escape" 

should not be permitted. 

6.4. Conversations 

As with recovery blocks, the use of conversations requires programming 

Again, Ada fails to provide any but this is not too surprising 

This is one of the major 

language support. 

since there are no satisfactory proposals in the literature. 

shortcomings of conversations. 

Conversations have been criticized in the past for failing to provide a 

mechanism preventing "desertion". Desertion is the failure of a process to enter a 
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conversation when other processes expect its presence. Whether the process will 

never enter the conversation, is simply late, or enters the conversation only to take 

too long or never arrive at the acceptance testk), does not matter to the others if 

they have deadlines to meet, as is likely in a crucial system. Thus, desertion is 

another form of what we have called the infinite loop problem. The processes in a 

conversation must be extricated if the conversation begins to take too long. Each 

process may have its own view of how long it is willing to wait, especially since 

processes may enter a conversation asynchronously. Also, a deserter can be 

considered erroneous, but determining which process is a deserter could be diflicult. 

Only the concurrent recovery block scheme even addresses the desertion problem. 

The solution there is to enclose the entirety of each participating process within 

the conversation. Not only can a process fail to arrive at a conversation, it cannot 

exist outside of the conversation. 

The original conversation proposal made no mention of what was to be done 

if the processes ran out of alternates. Two presumptions may be made: that the 

retries proceed indefinitely, which is inappropriate for a real-time system, or that 

an error is to be automatically detected in each of the pr-, as is assumed in all 

of the proposed conversation syntaxes. What the syntactic proposals do not address 

is that, when a process fails in a primary attempt at communication with one 

group of processes to achieve its goal, it may want to attempt to communicate with 

an entirely different group as an  alternate strategy for achieving that goal. This is 

the kind of divergent strategy alluded to above. The name-linked recovery block 

a i d  !he converxtion monitor schemes do not mention whether it is an error for 

different processes to make different numbers of attempts at communicating. 

Although they may assume that is covered under the desertion issue, that may not 
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necessarily be true if processes are allowed to converse with alternate groups. 

Russell’s work 161 permitting the application to have direct control over 

establishment, restoration, and discard of recovery points has its own set of 

problems. First of all, his premise ignores the possibility that the information 

within a message can contaminate a process’ state. When the receiver of a message 

is rolled back, he merely replaces the same message on the message queue. This was 

the main “advantage” derived from knowing the direction of message transmission. 

His application area is that of producerconsumer systems. The control systems we 

are considering are feedback systems. A producer almost always wants to be 

Sormed  a b u t  the effects of the grodl~c?, and a consumer almost a.!wa.ys wants to 

have some influence over what it will be consuming in the future. The 

relationships between sensors and a control system and between a control system 

and actuators can be viewed as pure producerconsumer relationships, but sensors 

and actuators are more accurately modeled as unrecoverable objects. The scheme 

allows completely unstructured application of the MARK, RESTORE, and PURGE 

primitives. This fact, along with the complicated semantics of conversations, 

which they are provided to create, affords the designer much more opportunity to 

introduce faults into the software system. 

All of Kim’s proposals [71 use monitors for inter-process communication. In a 

distributed system, monitors and any other form of shared variables are vulnerable 

to extensive delays. While a monitor may be implemented as a fully-replicated 

distributed database, most other implementations leave its information vulnerable 

to processor failxre. With an independently executing process, as one would 

simulate a monitor in -Ada, the application could decide upon appropriate times to 

save copies for use by a replacement after reconfiguration. But the traditional 
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monitor is not active and long periods may pass without any process calling a 

procedure that updates a replacement monitor's state. 

Since the name-linked recovery block proposal makes no mention of the 

method of communication among processes within a conversation, it remains open 

to charges of permitting smuggling. If processes use monitors, message buffers, of 

ordinary shared variables, other processes can easily "reach in" to examine or change 

values while a conversation is in progress. Kim also states that ensuring proper 

nesting of name-linked recovery blocks is impossible. 

The conversation monitor is designed to prevent smuggling but, as Kim's 

description stands, it allows a problem that is even more insidious than smuggling. 

A monitor used within a conversation is initialized for each use of the 

conversation, but not for each attempt within a conversation. This allows partial 

results from the primary or a previous alternate to survive state restoration within 

the individual processes. Since such information is in all probability erroneous, it 

is likely to contaminate the states within this and all subsequent alternates. 

Our conclusion from all of this is that Ada makes no provision for fault- 

tolerant software but that none of the proposed technologies are really complete 

and ready for use. Extensive work is needed to complete the theory before 

practical use can be made in Ada and similar programming languages. We have 

taken these various issues and dehed a new programming construct for backward 

error recovery called the colloquy. The colloquy is presented as an extension to 

Ada. In our opinion, all the deficiencies of previous proposals have been solved by 

the colloquy, and it includes all previous solutions as special cases. The colloquy 

has been written up in a paper which we have submitted to the Fifteenth 

International Symposium on Fault-tolerant Computing. A copy of the paper is 
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included in Appendix 2 of this report. We are presently implementing the 

colloquy in our Ada testbed. 
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7. Professional Activities 

During the grant reporting period we have prepared several papers and made 

various presentations about this work. 

In May, we were invited to a workshop sponsored by Westinghouse Space and 

Electronics Center in Baltimore Maryland. The purpose of the workshop was to 

allow Westinghouse personnel to become familiar with various technologies for 

crucial systems, and to expose researchers to the present and pending DoD-related 

projects requiring very high reliability. 

We were also invited to participate in a pne! session at the Distributed 

Processing conference held in San Francisco in May. This panel addressed 

distributed Ada and the other panel members were David Fisher from Gensoft 

Corporation, Robert Firth from Tartan Laboratories, Bryce Barton from Hughes 

Aircraft, and Dennis Cornhill from Honeywell. There was some agreement among 

the panelists and substantial disagreement. Nothing that was said affected our 

position on the inadequacies of Ada for distributed computing. 

In the 1983annual report for tkh grant we included &pies of two papers that 

had been submitted to the Fourteenth Fault-Tolerant Computing Systems 

Symposium (FTCS 14). One of those papers (appendix 3 in that report) was 

rejected. We disagree with many of the comments made by one of the referees and 

have written to the conference organizers requesting clarification. The second 

paper (appendix 4 in the report) was accepted and was presented at FTCS 14. 

A lengthy paper describing most of our work on Ada in some detail was being 

prepared when we submitted our 1983annual report. A preliminary version of 

that paper was included in that report as appendix 5. That paper has been 
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completed and submitted to the IEEE Transactions on Software Engineering. After 

ten months, we are still awaiting an editorial decision from that journal. A 

shortened version of that paper was sent to AdaLETERS, the publication of the 

ACM Special Interest Group on Ada, and appeared in volume IV, issue 3. 
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APPENDIX 1 

procedure EXAMPLE i s  

task  CALLER i s  
pragma d i s t r i b u t e - t o ( 1 ) ;  
pragma p r i o r i t y ( 1 ) ;  

end CALLER; 

task  SERVER i s  
e n t r y  E; 
p ragma d i s t r i but  e-t o( 2) ; 
pragma pr i o r  i t y (  1 ) ; 

end SERVER; 

task  ALTERNATE-SERVER i s  
e n t r y  ABNORMAL-START; 
e n t r y  E; 
pragma d i s t r i b u t e - t o ( 1 ) ;  
pragma p r i o r i t y ( 1 ) ;  

end ALTERNATE-SERVER ; 

task  body CALLER i s  

beg in  
SYSTEM-STATE : in teger ;  

SYSTEM-STATE := 1; 
wr i te (1 .1 ) ;  
I oop 

MA I N-BLOCK : 
beg in  

i f  SYSTEM-STATE = 1 then 
w r i t e ( l . 2 ) ;  
SERVER. E; 
w r i t e (  1.3); 

w r  i t e ( l . 4 )  ; 
ALTERNATE-SERVER. E; 
w r i  t e ( l . 5 ) ;  

e l s e  

end i f ;  

when TASKING-ERROR=> 
except i o n  

SYSTEM-STATE := 2; - abnormal 
end MAIN-BLOCK; 

end loop; 
end CALLER; 
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task body ALTERNATE-SERVER i s  
beg i n 

wr i t e (2 .1 ) ;  
accept ABNORMAL-START; 
I oop 

wr i t e (2 .2 ) ;  
accept E; 
w r i t e (2 .3 ) ;  

end loop; 
end ALTERNATE-SERVER; 

task RECONFIGURE-1 i s  
e n t r y  FAILURE(WH1CH : i n  in teger ) ;  
pragma d i s t r i bu t  e-t o (  1 ) ; 
pragma p r i a r i t y ( 2 ) ;  
f o r  FAILURE use a t  10; 

end RECONFIGURE-1 ; 

task  body RECONFIGURE-I i s  
beg in  

I oop 
w r i t e ( 3 , l ) ;  
accept FAILURE(WH1CH : i n  integer)  do 

w r i  te(3.2); 
ALTERNATE-SERVER . ABNORMAL-START ; 
wr i t e(3.3) ; 

end FAILURE; 

end RECONFIGURE-1 ; 
end loop; 

t ask  ALTERNATE-CALLER i s  
en t r y  ABNORMAL-START ; 
pragma d i s t r i b u t e - t o ( 2 ) ;  
pragma pr i o r  i t y  (1 ) ; 

end ALT ERNAT E-CALLER ; 

task  body ALTERNATE-CALLER i s  
beg i n 

w r i  t e ( 4 , i ) ;  
accept ABNORMAL-START; 
I oop 

wr i t e (4 .2 ) ;  
SERVER. E ; 
wr i t e (4 .3 ) ;  

end loop; 
end ALTERhATE-CALLER; 



t a s k  body SERVER i s  
beg i n 

wri t e ( 5 . 1 ) ;  
I oop 

wr i t e ( 5 . 2 ) ;  
accept  E; 
w r i t e ( 5 . 3 ) ;  

end loop;  
end SERVER; 

t a s k  RECONFIGURE-2 i s  
e n t r y  FAILURE(WH1CH : i n  i n t e g e r ) ;  
pragma d i s t r i b u t e - t o ( 2 ) ;  
pragma p r i o r i t y ( 2 ) ;  
f o r  FAILURE use a t  10; 

end RECONFIGURE-2; 

t a s k  body RECONFIGURE-2 i s  
beg i n 

wri t e ( 6 . 1 ) ;  
accept  FAILURE(WH1CH : i n  i n t e g e r )  do 

wr i t e ( 6 . 2 )  ; 
ALTERNATE-CALLER . AENOWL-START ; 
w r i t e ( 6 . 3 ) ;  

end FAILURE; 
end RECONFIGURE-2; 

b e g i n  

end : 
n u l  I ;  
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1. INTRODUCTION 

In this paper we examine the issues involved in the use of backward error recovery in 

critical, real-time systems. In particular, we are concerned with language facilities that 

allow programmers to specify how alternate algorithms are to be applied in the event that 

1 an error is detected. The best-known approach is the conversation . Many difficulties with 

conversations have been pointed out including the lack of any time-out provision and the 

possibility of deserter processes. We introduce a new building block for concurrent 

programs called the dirrlog and a new backward-error-recovery primitive called the 

colloquy that remedy the various limitations of the conversation. The colloquy is 

cmstructed from dialogs and provides a general framewnrk fer d~scrlhing hackward errnr 

recovery in concurrent programs. 

All of the syntactic proposals that we introduce are derived from Adae '. The dialog 

and colloquy are proposed as general concepts but the specific syntax for their use is given 

as extensions to Ada. The actual syntax is irrelevant; the concepts could be used in many 

other programming languages. However, once chosen, a rigid syntax can allow a compiler 

to enforce certain of the semantic rules. 

In section two, we briefly describe the concept of the conversation and the associated 

syntactic proposals that have been made. Issues that have been raised with conversations 

are discussed in section three. In section four, we present a syntax for the dialog called the 

discuss statement. In section five, we introduce the colloquy and a new statement called 

the dialog-sequence which allows the specification of the actions needed for a colloquy. In 

section six, we discuss the use of colloquys in the implementation of all previous approaches 

to backward error recovery. 

~~ 

'Ada is a registered trademark of the US. Government (Ada Joint Program Office). 
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2. CONVERSATIONS 

The conversation is the canonical software fault-tolerance proposal for dealing with 

communicating processes. In a conversation a group of processes separately establish 

recovery points and begin communicating. At the end of their communication (Le. the end 

of the conversation), which may include the passage of multiple distinct sets of 

information, they each wait for the others to arrive at an acceptance test for the group. If 

they pass the acceptance test, they commit to the information exchange that has transpired 

by discarding their recovery points and proceeding. Should they fail the acceptance test, 

they all restore their states from the recovery points. No process is allowed to smuggle 

information in or oiit by conmiinicatiiig with a process that is mt participating in the 

conversation. Conversations can be nested; from the point of view of a surrounding 

3 conversation, a nested conversation is an atomic action . 

Although not explicitly stated in the literature, it is assumed that if an error occurs 

during a conversation such that the acceptance test fails, the 5 u m  set of conversant 

processes attempt to communicate again once individually rolled back and reconfigured 

(rather than proceeding on unrelated activities). It follows that they eventually reach the 

5ume acceptance test again. It is also presumed that any other failure of one of the processes 

is taken as equivalent to a failure of the acceptance test by all of them. 

The processes in a conversation are the components of a system of processes. Error 

detection mechanisms for this system consist of announcement of failure by any one of the 

components and the single acceptance test. The acceptance test evaluates the combined 

states of the component processes with the designed intent of their communications. 

Damage assessment is complete before execution begins since the individual states of all the 

processes involved in the conversation are suspect, but no other processes are affected. Error 

recovery consists of restoring each process to the state it had as it entered the conversation, 

and the system of processes continues with its service by allowing each process to re-try 
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the communication perhaps using an alternate mechanism within that process for the 

communication activity. 

Conversations were originally proposed as a structuring or design concept without any 

syntax that might allow enforcement of the rules. Russell has proposed the “Name- 

Linked Recovery Block” as a syntax for conversations. The syntax appropriates that of the 

recovery block . What would otherwise be a recovery block, becomes part of a 

conversation designated by a conversation identifier. The primary and alternate activities 

of the recovery block become that process’ primary and alternate activities during the 

conversation, and the recovery block’s acceptance test becomes that portion of the 

conversation’s acceptance iest appropriate io this process. Tiiz CijiiVePsdoii’P acceptance test 

is evaluated after the last conversant reaches the end of its primary or alternate. If any of 

the processes fail its acceptance test, all conversants are rolled back. 

4 

5 

6 Kim has examined several more possible syntaxes for conversations . His approaches 

assume the use of monitors as the method of communication among processes. He examines 7 

the situation from two philosophies toward grouping. In one scheme, the conversing 

activities are grouped with their respective processes’ source code, but are well marked at 

those locations. In another scheme, the conversing actions of the several processes are 

grouped into one place so that the conversation has a single location in the source code. The 

issue he is addressing is whether it is better to group the text of a conversation and scatter 

the text of a process or to group the text of a process and scatter the text of a conversation. 

A third scheme attempts to resolve the differences between the first two. 

3. ISSUES WITH CONVERSATIONS 

Desertion is the failure of a process to enter a conversation or arrive at the acceptance 

test when other processes expect its presence. Whether the process will never enter the 
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conversation, is simply late, or enters the conversation only to take too long or never arrive 

at the acceptance test, does not matter to the others if they have real-time deadlines to 

meet. Each process may have its own view of how long it is willing to wait, especially 

since processes may enter a conversation asynchronously. Whether they protect inter- 

process communications or sequential parts of processes, acceptance tests must be reached 

and reached on time for the results to be useful. Meeting real-time deadlines is as 

important to providing the specified service as is producing correct output. In order to deal 

effectively with desertion, especially in critical systems, some form of timing specification 

on communication and on sequential codes is vital. 

When it needs to communicate, a ijrocess eiiteis a coii\Xisatioii and stays there, perhaps 

through many alternate algorithms, until the communication is completed successfully. 

The same group of processes are required to be in the alternate interactions as were in the 

primary. The recovery action merely sets up the communication situation again. In the 

original form of conversation, once a process enters the construct, it  cannot break out and 

must continue trying with the same set of other processes, including one or more which 

may be incapable of correct operation. In practice, when a process fails in a primary 

attempt at  communication with one group of processes to achieve its goal, it  may want to 

attempt to communicate with an entirely different group as an alternate strategy for 

achieving that goal; in fact, different processes might make different numbers of attempts 

at  communicating. Conversations do not allow this, although it is not desertion if it is 

systematic and intended. 

In a conversation, once individually rolled back and reconfigured, the same set of 

conversant processes attempt to communicate again, and eventually reach the same 

acceptance test again. True independence of algorithms between primary and alternates, 

within the context of backward error recovery, might require very different acceptance 

tests for each algorithm, particularly if some of them provide significantly degraded 
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services. A single test for achievement of a process’ goal at a particular point in its text 

would of necessity have t o  be general enough to pass results of the most degraded 

algorithm. This might be too general to  enable i t  to catch errors produced by other, more 

strict, algorithms. These considerations suggest the need for separate acceptance tests 

specifically tailored for each of the primary and alternate algorithms. 

It must also be remembered, that although each process has its own reasons for 

participating, there is a goal for the group of processes as well. Rather than combine the 

individual goals of the many participants with the group goal in a single acceptance test 

(perhaps allowing the programmer to forget some), and rather than replicating the test for 

achievement of the group goal within evcry pwticipant, there should be a YbYULUCe ------+ 

acceptance test for each participant and another for the group. 

A final problem with the conversation concept as i t  was originally defined, is that if a 

process runs out of alternates, no scheme is provided or mentioned for dealing with the 

situation. 

4. THEDIALOG 

We define a diolog to be an Occurrence in which a set of processes: 

(a> establish individual recovery points, 

(b) 

(c> 

communicate among themselves and with no others, 

determine whether all should discard their recovery points and proceed or restore 
their states from their recovery points and proceed, and 

(d) follow this determination. 

Success of a dialog is the determination that all participating processes should discard 

their recovery points and proceed. Failure of a dialog is the determination that they should 

restore their states from their recovery points and proceed. Nothing is said about what 
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should happen after success or failure; in either case the dialog is complete. Dialogs may be 

properly nested, in which case the set of processes participating in an inner dialog is a 

subset of those participating in the outer dialog. Success or failure of an inner dialog does 

not necessarily imply success or failure of the outer dialog. Figure 1 shows a set of three 

processes communicating within a dialog. 

We introduce the discuss statement as a syntactic form that can be used to denote a 

dialog. Figure 2 shows the general form of a discuss statement. The dialog_name associates 

a particular discuss statement with the discuss statements of the other processes 

participating in this dialog, dynumicdy determining the constituents of the dialog. This 

association cannot in general be known statically. At execution time, when control enters a 

- 
Time 

- Establish Recovery Point 

) - Discard Recovery Point 

- Inter-process Communication 

Three Processes Communicating in a Dialog 
Figure 1 
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DISCUSS dialog-name BY 

sequence-of-statements 

TO ARRANGE Boolean-expression; 

A DISCUSS Statement 
Figure 2 

process’ discuss statement with a given dialog name, that process becomes a participant in a 

dialog. Other participants are any other processes which have already likewise entered 

discuss statements with the same dialog name and have not yet left, and any other processes 

which enter discuss statements with the same dialog name before this process leaves the 

dialog. Either all participants in a dialog leave it with their respective discuss statements 

successf.ul, or all leave with them failed, i.e. the dialog succeeds or fails. 

The sequence of statements in the discuss statement represent the actions which are 

this process’ part of the group’s actions within their dialog. Any inter-process 

communication must take place within this sequence of statements (i.e. be protected by a 

dialog). The discuss statement fails if an exception is raised within it, if an enclosed 

dialog-sequence (see belowj fails, or if any timing constraint is violated. 

The Boolean-expression is an acceptance test on the results of executing the sequence 

of statements. It represents the process’ local goal for the interactions in the dialog. It is 

evaluated after execution of the sequence of statements. If this Boolean expression or that 

in the corresponding discuss statement of any other process participating in this dialog is 

evaluated false, the discuss statement of each participant in the dialog fails. If all of the 

local acceptance tests succeed, the common goal of the group, i.e. the global acceptance test is 

evaluated. If this common goal is true, the corresponding discuss statements of all 

participants in the dialog succeed; otherwise they fail. Syntactically, the common goal is 
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specified by a parameterless Boolean function with the same name as the dialog name in the 

discuss statement. 

We stated that the participants in a particular dialog cannot be known statically. 

There may be, say, three processes whose texts contain references to a particular dialog 

name. If two of them enter a dialog using that name, questions might arise about 

participation of the third. The third process may be executing some other portion of its 

code so that it is unlikely to enter a dialog of that name in the near future. If the two 

processes reach and pass their acceptance tests, they, being the only participants in the 

dialog, can leave it -- the third process is not necessary to the dialog, so is not a deserter. If 

the dialog fails due to an acceptance test c~r a t i ~ e z u t  (see belew!, the prcb!em is not 

guaranteed to be the absence of the third process, so again it is not (necessarily) a deserter. 

If the dialog has no time limit specified (see below), that had to be by conscious effort of the 

programmer, so the two processes becoming "hung" in the dialog while waiting for the third 

was not unplanned. 

The dialog names used in discuss statements are required to be declared in dialog 

declarations. The general form of a dialog declaration is: 

DIALOG function-name SHARES ( name-list ) ;  

The function-name is the identifier being declared as a dialog name (and the name of the 

function defining the global acceptance test). The names mentioned in the name-list are 

the names of shared variables which will be used within dialogs that use this dialog name. 

This includes variables used within the function that implements the global acceptance 

test. Only a variable so named may be used within a discuss statement, and then only 

within discuss statements using a dialog name with that variable's name in its dialog 

declaration. The significance of these rules is that the set of shared variables can be locked 

by the compiler and execution-time support system to prevent smuggling. In effect, the 

actions of the dialog's participants are made to appear atomic to other processes with respect 
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to these variables. (Our implementation, not described here, also prevents smuggling via 

messages or rendezvous). 

The Boolean function named by the dialog name is evaluated after all processes in the 

dialog have evaluated their respective Boolean expressions and they all evaluate to true. It 

is only evaluated once for an instance of the dialog; i.e. it is not evaluated by each 

participating process. Thus no process can leave a dialog until all processes currently in 

that dialog leave with the same success, and success involves the execution of both a local 

and a global acceptance test. 

5. THE COLLOQUY 

A colloquy is a semantic construct that solves the problems of conversations. Unlike 

conversations, the rules of order and participation are well-defined and explicitly laid out. 

A colloquy is a collection of dialogs. At execution time, a dialog is an interaction 

among processes. Each individual process has its own local goal for participating in a dialog, 

but the group has a larger global goal; usually providing some part of the service required 

of the entire system. If, for whatever reason, any of the local goals or the global goal is not 

achieved, a backward error recovery strategy calls for the actions of the particular dialog to 

be undone. In attempting to ensure continued service from the system, each process may 

make another attempt at achieving its original local goal, or some modified local goal 

through entry into a different dialog. Each of the former participants of the now defunct 

dialog may choose to interact with an entirely separate group of processes for its alternate 

algorithm. The altered constituency of the new dialog(s) most certainly requires new 

statementh1 of the original global goal. The set of dialogs which take place during these 

efforts on the processes' part is a colloquy. A set of four processes engaged in a colloquy that 

involves three dialogs is shown in Figure 3. 
*r 



Time 

Four Processes in a Colloquy of Three Dialogs 
Figure 3 

A colloquy, like a dialog or a rendezvous in Ada, does not exist syntactically but is 

entirely an execution-time concept. The places where the text of a process statically 

announces entry into colloquys are marked by a variant of the Ada select statement called 

a dialog-sequence. 

The general form of a dialogsequence is shown in Figure 4. At execution time, when 

control reaches the select keyword, a recovery point is established for that process. The 

process then attempts to perform the activities represented in Figure 4 by a t  tempt-1. The 

attempt is actually a discuss statement followed by a sequence of statements. To ensure 

proper nesting of dialogs and colloquys, a discuss statement may appear only in this 

context. If the performance of these activities is successfd, control continues with the 

statements following the dialog-sequence. The term "success" here means that no 

defensive, acceptability, or timing checks occurring within the attempt detected an error, 

and that no exceptions (if the language has exceptions) were propagated out to the attempt's 

discuss statement. If the attempt was not successful, the process' state is restored from the 
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SELECT 
a t  tempt-1 

a t  tempt-2 

a t  temp t-3 

OR 

OR 

TIMEOUT simple-expression 
sequence -of-statements 

ELSE 

END SELECT; 
sequence -of-statements 

Dialog-Sequence 
Figure 4 

recovery point and the other attempts will be tried in order. Thus, the dialog-sequence 

enables the programmer to provide a primary and a list of alternate algorithms by which 

the process may achieve its goals at that locus of its text. 

Exhaustion of all attempts with no success brings control to the else part after 

restoration of the process' state from the recovery point. The else part contains a sequence 

of statements which allows the programming of a "last ditch" algorithm for the process to 

achieve its goal. If this sequence of statements is successful, control continues after the 

dialog-sequence. If not, or if there was no statement sequence, the surrounding attempt 

fails. 

Timing constraints can be imposed on colloquys (and hence on dialogs). Any 

participant in a colloquy can specify a timing constraint which consists of a simple 

expression on the timeout part of the dialog-sequence. Absence of a timing constraint 

must be made explicit by replacing the simple expression with the keyword never. A 

timing constraint specifies an interval during which the process may execute as many of the 

attempts as necessary to achieve success in one of them. Should an attempt achieve success 
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or the list of attempts be exhausted without success before expiration of the interval, 

further actions are the same as for dialog-sequences without timing specifications. 

However, if the interval expires, the current attempt fails, the process' state is restored 

from the recovery point, and execution continues at the sequence of statements in the 

timeout part. The attempts of the other processes in the same dialog also fail but their 

subsequent actions are determined by their own dialog-sequences. If several participants in 

a particular colloquy have timing constraints, expiration of one has no effect on the other 

timing constraints. The various intervals expire in chronological order. As with the else 

part, the timeout part allows the programming of a "last ditch" algorithm for the process to 

achieve its goal, and is really a form of forward recovery since its effects will not be 

undone, at least at this level. If the sequence of statements in the timeout part is 

successful, control continues after the dialogsequence. If not, or if there were no 

statement sequence, the surrounding attempt fails. 

In any attempt, a statement sequence (which is logically outside the dialog-sequence) 

can follow the discuss statement to provide specialized post-processing after the recovery 

point is discarded if the attempt succeeds. I t  is not subject to this dialog-sequence's timing 

constraint. 

The programmer is reminded by its position after the timeout part that the else part 

is not protected by the timer, and that i t  is reached only after other (potentially time- 

consuming) activities have taken place. The structure of the dialog-sequence also requires 

no acceptance check on these activities. The implication of these two observations is that 

the last ditch activities need to be programmed very carefully. 

A fail statement may occur only within a sequence of statements contained within a 

dialog-sequence. Execution of a fail statement causes the encompassing attempt to fail. 

The fail statement is intended for checking within an attempt. For example, i t  can be used 

to program explicit defensive checks on inputs such as: 
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I F  input -var iab le  < lower-bound THEN 

END I F ;  
FAIL;  

It can also be used to simplify the logical paths out of an attempt should some internal case 

analysis reach an "impossible" path. With the fail statement, the programmer does not have 

to make the code for the attempt complicated by providing jumps or other paths to the 

acceptance test or to insure that some part of the test is always false for such a special 

path. The fail statement can also be used to provide sequences of statements for the else 

and timeout parts that make failure explicit rather than implicit (i.e. failure is indicated 

by their absence). 

6. OTHER LANGUAGE FACILITIES 

8 9 Dialog-sequences can be used to  construct deadlines , generalized exception handlers , 

recovery blocks, traditional conversations, exchanges'', and s-conversations". Thus the 

colloquy is at least as powerful as each of these previously proposed constructs for 

provision of fault tolerance. For the sake of brevity, we will illustrate only the 

programming of a recovery block. 

A recovery block is a special case of a colloquy in which there is only one process 

participating, every dialog uses the same acceptance test, there is no timing requirement, 

and there are no "last ditch" algorithms to prevent propagation of failures of the construct. 

Figure 5 shows a dialog-sequence that is equivalent to the recovery block shown in Figure 

6. The use of the fail statement in the dialog-sequence makes explicit the propagation of 

the error to a surrounding context just as does the else error closing of the recovery block. 

In the dialog-sequence, the Boolean expression is repeated in the discuss statements rather 

than gathered into the dialog function because we want to be able to include local variables 

in it as a programmer of the recovery block would. Should an error be detected in 

statement-sequence-1, the state is restored and statement-sequence-2 is executed, and so on. 
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FUNCTION abc RETURNS boolean I S  BEGIN RETURN TRUE; END abc; 

DIALOG abc SHARES ( ) ;  
. . . .  

. . .  

SELECT 
DISCUSS abc BY 

TO ARRANGE boolean-expression-1; 
s t a t  eme n t -seque nc e-1 

OR 
DISCUSS abc BY 

TO ARRANGE boolean-expression-I;  
statement-sequence-2 

OR 
DISCUSS abc BY 

TO ARRANGE boolean-expression-1; 
statement-sequence-3 

T IMEOUT NEVER ; 

ELSE 

END SELECT; 
FAIL;  - O m i t t i n g  t h i s  l i n e  does not change t h e  semantics. 

Specification of Colloquy for a Recovery Block 
Figure 5 

ENSURE boo I ean-exp ress i on-1 BY 
statement-sequence-1 

ELSE BY 
s t a t  eme n t -seque nce-2 

ELSE BY 
statement-sequence-3 

ELSE ERROR: 

A Recovery Block 
Figure 6 

Finally, should an error be detected in statement-sequence-3. the state is restored and the 

error is signaled in a surrounding context. An error may be detected by evaluation of 
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boo I eon-express i on-1 to false, or by violation of some underlying interface (such as raising 

of an exception). 

7. CONCLUSIONS 

We have introduced a new linguistic construct, the colloquy, which solves the 

problems identified in the earlier proposal, the conversation. We have shown that the 

colloquy is at least as powerful as recovery blocks, but it is also as powerful as all the other 

language facilities proposed for other situations requiring backward error recovery; 

recovery blocks, deadlines, generalized exception handlers, traditional conversations, s- 

conversations, and exchanges. 

The major features that distinguish the colloquy are: 

The inclusion of explicit and general timing constraints- This allows processes to 

protect themselves against any difficulties in communication that might prevent them 

from meeting real-time deadlines. I t  also effectively deals with the problem of 

deserter processes. 

The use of a two-level acceptance test. This allows much more powerful error 

detection because it allows the tailoring of acceptance tests to specific needs. 

The reversal of the order of priority of alternate communication attempts and of 

recovery points. This allows processes to choose the participants in any alternate 

algorithms rather than being required to deal with a single set of processes. 

A complete and consistent syntax that is presented as extensions to Ada but could be 

modified and included in any suitable programming language. 

Sample programs that have been written (but not executed) using the colloquy show 

that extensive backward error recovery can be included in these programs simply and 

elegantly. We are presently implementing these ideas in an experimental Ada testbed. 
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This paper is not a formal statement of these concepts. The reader may correctly feel 

that important detail has been omitted. We are only able to present informally the key 

concepts in a paper of this length. For more details, see [12]. 
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